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ABSTRACT

This paper is concerned with introducing and studying the M-space by using the mixed degree systems which are
the core concept in this paper. The necessary and sufficient condition for the equivalence of two reflexive M-spaces is
super imposed. In addition, the m-derived graphs, m-open graphs, m-closed graphs, m-interior operators, m-closure
operators and M-subspace are introduced. From an M-space, a unique supratopological space is introduced. Furthermore,
the m-continuous (m-open and m-closed) functions are defined and the fundamental theorem of the m-continuity is

provided. Finally, the m-homeomorphism is defined and some of its properties are investigated.
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1. INTRODUCTION

For a long time, many individuals believed that abstract topological structures have limited application in the
generalization of real line and complex plane or some connections to Algebra and other branches of mathematics. And it
seems that there is a big gap between these structures and real life applications. We noticed that in some situations, the
concept of relation is used to get topologies that are used in important applications such as computing topologies [12],
recombination spaces [5, 6, and 13] and information granulation which are used in biological sciences and some other

fields of applications.

Topological graph theory [1, 2, 4, 9, and 10] is a branch of mathematics, whose concepts exists not only in almost
all branches of mathematics, but also in many real life applications. We believe that topological graph structure will be an

important base for narrow the gap between topology and its applications.

A directed graph or digraph [11] is pair G = (V(G), E(G)) where V(G) is a non-empty set (called vertex set) and
E(G) of ordered pairs of elements of V(G) (called edge set). An edge of the from (v, v) is called a loop. If v€V(G), the out-
degree of vis [{u€V(G) : (v, y)€EE(G)}| and in-degree of v is [{u€V(G) : (u, v)EE(G)}|. A digraph is reflexive if (v, vJEE(G)
for each veV(G), symmetric if (v, u)€EE(G) implies (u, v) €E(G), transitive if (v, w)€E(G) and (u, w)EE(G) implies (v,
w)EE(G), tolerance if it is reflexive and symmetric, dominance if it is reflexive and transitive, equivalence if it is reflexive
and symmetric and transitive, serial if for all v€V(G) there exists u€V(G) such that (v, u)€EE(G).A sub graph of a graph G is
a graph each of whose vertices belong to V(G) and each of whose edges belong to £(G). An empty graph [3] if the vertices
set and edge set is empty. A subfamily u of X is said to supratopology [8] on X if (i) X, ¢€u (ii) if A;€Vi€j then U4,€Ep.
(X p) is called supratopology space. Let G = (V' (G), E (G)) be a digraph, the digraph inverseG™ [7] is specified by the
same set of vertices V' (G) and a set of edge E (G) ™= {(u, v): (v, u) EE (G)}.
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52 Yousif Yaqoub Yousif & Sara Saad Obaid

2. MIXED DEGREE SYSTEMS AND M-SPACES

In this section, we introduce and investigate the notions of mixed degree systems, M-spaces and m-derived graphs

which are essential for our present study.
Definition 2.1.
Let G=(V (G), E (G)) be digraph and a vertex v€ V (G).
(a) The out-degree set of v is denoted by vD and defined by: vD={u€V(G): (v, W) EE(G)} and
(b) The in-degree set of v is denoted by Dv and defined by: Dv= {u€V (G): (u, v) EE (G)}.
Definition 2.2.

Let G=(V(G),E(G))be a digraph, then the out-degree system(resp. in-degree system)of a vertex v€V(G) is denoted
by ODS(v) (resp.IDS(v))and defined by:

ODS (v) = {vDj} (resp. IDS (v) = {Dv}).
Example 2.3.

Let G=(V(G),E(G)) be a digraph such that
V(G)={v1,v2v2 Ve Vs, E(G)={(v1,V1),(V1,V2), (V2,V3),(V2,V5), (Va V3), (Va, V), (V5 V2), (V5 Ve), (V5 V5) |

Figure 2.1: Graph G given in Example 2.3

Then we have OD®Wy)={vs, v2},0OD(vz)={vs, vs},OD(Wv3)=¢OD(vy)={vs, v4},OD(vs5)={vs vy
Vs}.ODS(v)={{v1, v2}},ODS(v2)={{vs, vs} },ODS(v3)={¢},ODS(ve)={{vs, v4} | and ODS(vs)={{vz, v4 Vs}}.

Also, we have
ID(v)={v1},ID(vz) ={v1,v5} ID(v3) ={v2,v4}, ID (V) = {v4,v5} ID(vs)={v2,v5} . IDS(vy) ={{v1} },IDS(v2) ={{v1,v5} } IDS(v3)=
1v2.ve} 1IDS(vy) ={{v4,vs}} and IDS(vs)={{vz, vs}}.

Definition 2.4.

Let G=(V(G),E(G)) be a digraph. The mixed degree system of a vertex v€V(G) is denoted by MDS(v) and defined
by MDS(v)={ODS(v),IDS(v)}.

Definition 2.5.
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Topological Structures Using Mixed Degree Systems in Graph Theory 53
Let G= (V (G), E (G)) be a digraph the mixed degree of a vertex v€V (G) is denoted by MD(v) such that

MDW)EMDS(v).

Example2.6.

According to Example (2.3), the mixed degree systems are given by

MDS(v)={{v, vz}, {va}}, MDS(v2)={{vs, vs},{vs, vs} },MDS(v3)={ @ {vz va}}, MDS(vy)={{vs, v}, {vs vs}} and
MDS(vs)={{v2, V4, Vs},{vz vs}}.

Definition 2.7.

Let G=(V(G),E(G)) be a digraph and suppose that &, V(G)— P(P(V(G))) is a mapping which assigns for each v in
V(G) its mixed degree system in P(P(V(G))).The pair (G,&,) is called an M-space.

Example 2.8.

Let G=(V(G),E(G)) be a digraph such that
V(G)={v1,v2,v3,veVsh E(G)={(v1,V2),(V1,V4), (V2,V2), (V4 V5), (Ve V5), (V4 V3), (V5 Vs) -

Yy Vg

L

Pl Vi

Figure 2.2: Graph G Given in Example 2.8

Thus we get

Env)={{vz, val, @), Ca(v)={{vzt vy, v} Sa(va) = B {vat 1 &u(v)={{vs, vsh {va))  and&,(vs)={{vs}, {vs,
vs}}. There for (G, &) is an M-space.

An M-space is defined by the mapping &, and a given graph G for which there are defined two different mappings

¢ ,and & given two different corresponding M-spaces.

It might see that the concept of M-spaces without additional assumptions on graph G is two general to embrace
many properties. It will be seen however that, with suitable definitions, a whole concept of M-spaces can be developed and

certain of its results find an application in generalized rough set theory.
Definition 2.9:

Let (G, &,) be an M-space. A vertex v in V' (G) is called a limit vertex of a graph HEG if every mixed degree of v
contains at least one vertex of A different from v. The set of all limit vertices of a graph HEG is called the m-derived graph

of H and is denoted by [V (H)],,, that is,
[V(H)]n={vEV(G);¥MD(v),MD(v) N(V(H)- {v}) #4}.
Example 2.10.

In Example (2.8),if HEG,H=(V(H),E(H)):V(H)={v1, vz, v3},E(H)={(v1, v2),(v2 V2)}
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Vi

vz L
Figure 2.3: Sub graph H of graph G Given in Example 2.10
Then [V (H)]n. ={v4}.

Suppose that ¥,,:P(V(G))—P(V(G)) is am aping which assigns for every graph HEG a set ¥,,(V(H))SV(G) such
that %, (V(H))=[V(H)],n.Obviously, by Definition (2.9), the mapping ¥, satisfies the following properties:

(@) Yu(®)=9,
(b) If HEK, then ¥,(V(H))< ¥,(V(K))for all HKSG and
(c) IfveY, (V (H)), then ve (V (H) - {v}).

Definition 2.11.

Two M-spaces (G, §m1)and (G, §mz) such that V(G;)=V(G;) are said to be equivalent if the m-derived graph
of each sub graph in (G1,§m1)equal to the m-derived graph of the same sub graph in(G,, §m2).In other words,the two M-

spaces (G1,§m1)and (Gs, §mz)are equivalent if and only if [V(H)],,,=[V(H)],for all V(H)SV(G4).
Example 2.12.
Let G;=(V(Gy), E(G1)),G2=(V(G2).E(G2)):V(G1)=V(G2)={vs, vz, vs}and

E(G1)={(v1, v1):(v2, v1),(v3, V2).(v3, v3)} and E(G2)={(v1, v2), (V2 Vv3),(v3, v3)}.

Vi Vi

K * O K ’ VSO

Figure 2.4: Graphs G; and G; given in Example 2.12

Then §m1 Induced by G; is given by:
§m1(V1):{{V1}, {vavz} },éml(vz):{{vz}, {vs}} and §ml("3):{{"2,v3}, tvat}
Also,§m2 induced by G;is given by:

Cm,(V)={v2h B 16 (v2)={H{vsh vty andg (va)={{vs},{vavs}}.
The two M-space (G, §m1) and (G, §mz) are equivalent.

Example 2.13:

Let:G,=(V(G1),E(G1)),G2=(V(G2).E(G2)):V(G1)=V(G2)={v1,v2v3},E(G)={(v1.V1). (V1. V2),(V2.v1).(v2,V3). (v3,v1) },E(G2)={(v1

V2),(V1,V3),(V2,v2),(V2,3),(Va,vi) .
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¥

g v
Va Vi s Yz

Figure 2.5: Graphs G; and G Given in Example 2.13.

Then §m1 Induced by Gis given by:

§m1(V1):{{V1,V2}, V(Gz)},éml(vz):{ {vivsh {vat} andéml(vg):{ {vivsh {vavst}.

Also §mz induced by G is given by:
§mz(v1)={{v2,V3},{V3}},§mz(v2)={{v2,V3}, {vivz}} andémz(v3)={{v1}, v vzt}

Let HCSG,Gz; V(H)={vyvs3}, then[V(]—I)];nl={v2} and[V(PI)]}nz={v1,v2,v3}. Accordingly, there exists
HCEG;,Gznamely V(H)={v;,vs} such that [V(H)]‘m1 * [V(H)];nzand hence the two M-spaces (G, §m1) and (G, §mz) are not

equivalent.

Definition 2.14.

An M-space (G,&,)is called reflexive (resp.serial, symmetric, transitive, and equivalence)if &, is induced by a
reflexive (resp.serial, symmetric, transitive, and equivalence) graph.
Example 2.15.

Let G=(V(G),E(G)):V(G) ={v1,v2,v3 s}, E(G)={(v1,v1),(v1,V2),(v2V2),(vV2V3),(V3V3),(V3V1),(V3 V), (Ve ve) }.

¥y v

YV Vi

Figure 2.6: Graph G given in Example 2.15

Hence &, is defined by &,(vi) = {{vi, vz}, {v1, vs}}, &uvz) = {{v2, v}, (o, w2l Ealvs) = {{vr, va,va), vz, vsh}
and&,(vy) = {{va}, {v3, v4}}.

Clearly, (G, &,) is reflexive M-space.

Example 2.16.
Let G=(V(G),E(G)):V(G)={v1,v2 34}, E(G)={(v1,V1),(V1,V2), (V2 Va), (V3,V3), (V3,V2), (V4 v3) ).
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Vg

¥z VJO

Figure 2.7: Graph G given in Example 2.16

Hence &, is defined by &u(vi) = {{ve, vz}, {vi, va}}, Gu(v2) = {{va}, {v1, va}}, Gu(vs) = {{vz, vs}. {vs}} and&u(vy)
= {{vs}, {2} }.Clearly, (G, &,) is serialM-space.

Example 2.17.

Let G=(V(G),E(G)):V(G)={v1,v2V3Va}, E(G)={(v1,V1),(V1,V2), (V2 V1), (V2 V3), (V3,V2), (V3 V3), (V3. V), (V4 V3) | .

W
. -

Vo ¥
Figure 2.8: Graph G given in Example 2.17
Hence &, is defined by &.(vi) = {{vi, vz}}, &u(v2) = {{vi, vst}, &uvz) = {{v2, vz, ve}} andg,(vy) =
{{vs}}.Clearly, (G, &,) is symmetric M-space.
Example 2.18.

Let G=(V(G).E(G)):V(G)={v1,v2,v3V4},E(G)={(v,v1),(V1,V2),(V2V1),(V2,V2), (V3,V1), (V3,V2),(V3,V4), (V4 V1), (V4 V2) } .

Vi Y

¥z
Figure 2.9: Graph G given in Example 2.18

Hence &, is defined by &.(vi) = {{vi, vz}, {v1, vz, vs, va}} Su(v2) = {{ve, v}, {ve, v2, v3, va}}, Gu(vs) = {{v1, va,va} 4}
and&,(vy) = {{vs, vz}, {vs}}.Clearly, (G, &,) is transitiveM-space.

Example 2.19.

Let G=(V(G).E(G)):V(G)={v1.v2,v2Va}, E(G)={(v1,V1),(V1.V2).(V1,V3), (V2.V1).(V2,V2), (V2. V3). (V3.V1),(V3.V2). (V3. V3), (V4. Va) }-

S v’O

Yz L]

Figure 2.10: Graph G given in Example 2.19
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Hence &, is defined by &u(vi) = {{v1, vz, va}}, &u(v2) = {{ve, vz, va}, {ve, v2}}, Gu(vs) = {{ve, vah, {vive, vs}}
andé,(vq) = {{v4}}.Clearly, (G, &,) is equivalence M-space.

Lemma 2.20.
In an reflexive M-space each vertex contained in each one of its mixed degrees.

Proof: Let (G,¢,) be a reflexive M-space. So &, is induced by a reflexive graph G and hence vE€OD (v) for all
vEV (G). Since G is reflexive, then G™is also reflexive and so v €ID (v) for all v€V (G).Consequently vEMD (v) for all
vEV (G).

Theorem 2.21. Two reflexive M-spaces (G, (fml) and (G, (fmz) such that V(G,)=V(G,)=V(G) are equivalent if and only if for

each mixed degree M;D(v) of a vertex v€V(G) there exists M,D(v) which is contained in M;D(v) and vice versa.

Proof. Let(G;, (fml)and (G, (fmz) be two equivalent reflexive M-spaces and veV(G).Suppose that M ;D(v) is mixed degree of v
and since(G1,¢,, )is reflexive M-space, then by Lemma(2.19),we have veM ;:D(v). Putting V(H)=V(G)-M1D(v),hence M:D(v)N V(H)=¢
and so v&V(H) and VE[V(I‘])]:ml. Since (G, (fml) and (G, (fmz) are equivalent then the m-derived graphs of H are the same in both M-
spaces, i.¢.[V(H)]m, =[V(H)],,, and hence v€ [V(H)],,,. Accordingly, there exists M>D(v) such that MD(v)N[V(H)—{v}]=¢ and since
v&V(H) then M>D(v)NV(H)= ¢therefore M.D(v)SV(G) —V(H)=M,D(v),i.e.M.D(v)SM;D(v).Similarly, because of the symmetry of the
condition, for every mixed degree M>D(v) there exists a mixed degree M;D(v) which is contained in M.D(v).Consequently, the condition

of the theorem is necessary.

Conversely, suppose that the condition of the theorem is satisfied and let V(H)SV(G).1f vG[V(H)]}nU then there is M;D(v) such
that M, Dv)N[V(H)-{v}]=¢.But, by the condition of theorem, there exists MD(v)such that MDv)SM;D(v), and so
MDW)N[V(H)—{v}]=¢ which implies v&[ V()] .and hence [V(H)];n, S[V(H)] . Similarly, we can show that [VE)],, SIVEH)] - As
a consequence we see that [V(H)] ‘,,11=[V(H)]‘m2 for all V(H)S V(G) and therefore the two M-space are equivalent.

The following example illustrates the idea of Theorem (2.20),
Example 2.22.

LetG:=(V(G1),E(G1)): V(G )= {vy,v2Vs}, E(G)={(v1,v1),(vV1,V2),(V2,V2),(V3,V2), (V3 v3)} and G2=(V(G2),E(G2)):
V(G2)={v1,v2, 3}, E(G2)={(v1,v1),(V2, 1), (V2 V2), (V3 V1) }.

Vi

T
Va 30 Vi Vz

Figure 2.11: Graphs G; and G given in Example 2.22

Then §mlinduced by G; is given bY§m1 (v)= {{vs, v2}, {v1}}, §m1(vz) = {{vz}, {vi, vz, v3}} andéml(v3) = {{vz,
V), (Vs

Also, ¢ induced by G is given byg, ~ (v1) = {iva}, (i, v235.6,, (v2) = {{ve, vz}, (2} ) andg, (vs) = {{vi), 4.
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Obviously, the two reflexive M-spaces (G1,§m1) and (Gz,émz) are equivalent since the condition of

Theorem(2.21), is satisfied.

3. M-Closed Graph and m-Closure Operators

In this section, we introduce the notions of m-closed graphs and m-closure operators and we study some of their

properties.
Definition 3.1.

In an M-space (G, &,), a graph which contains all its limit vertices is called m-closed. The family F's, of all m-

closed graphs of an M-space is defined by:

Fan=VIH)SV(G)[V(H)|,nSV(H)}-

Theorem 3.2.
In an M-space, the intersection of any family of m-closed graphs is m-closed.

Proof.Let(G, &,) be an M-space such that KEG and V(K)=N; (V(H);i €1, be the intersection of the m-closed graphsH.CG,i
€l.Hence KCH; for all i € which implies [V(K)]mS[V(H))]m for all i €LBut [V(H)],nS V(H; for all i €I since Hiis m-closed and so
[V(K)|mSV(Hfor all i € thus, [V(K)]|mENAV(H))=V(K) and hence K is m-closed.

If follows from definition of an m-closed graph that the empty graph¢ is m-closed (¢;n=¢§ @) and the whole M-space G is also
m-closed (G,,SG).Consequently, for every HEG there exists at least onem-closed graph,namely G,containing H.

Remark 3.3.The union of two m-closed graphs contained in an M-space need not be m-closed as shown in the following

example.

Example 3.4.
Let G=(V(G),E(G)):V(G)={v1,v2,v3,v4,Vs}, E(G)={(v1,v1), (V1. V5),(V2,V3),(V2,V4),(V3,V1), (V3,V3),(V5,V2), (V5 Va), (V5 Vs) }

¥
Vo *

Va
L]

Figure 3.1: Graph G given in Example 3.4

En(vi) = (v, vs}, 1ve, V33 ) Ea(vz) = {{va, val, {vs}}, Su(va) = {{ve, v}, {vz, va}}, Gn(Ve) = {@ {v2, vs}}, Sulvs)

= {{v2, v, Vs}, {1, Vs}}.

Accordingly, the family #,0f all m-closed graphs of this M-space is given by

«?Em:{ V(G), g Avi}, vz} {vat AVal Avs ) (v va), (Ve vsh Ava vah {va vl iva vs) Ava va), {va va, vel {va va vs) (v v

2V3 Vs}}-
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Obviously,thegraphsH=(V(H),E(H)): V(H)=1{v;},E(H)={(v1vy)}andK=(V(K), E(K)):V(K)={v2} E(K)=dare m-
closed but their unionHUK=(V(HUK),E(HUK)):V(HUK)={v;,v2}, E(HUK)={(v1,v1)} is not m-closed.

Theorem 3.5.If (G, &,) is an M-space and HEG is m-closed graph, then every graph contained in A and containing
[V(H)]mis m-closed

Proof.Let (G/&,) be an M-space and HKEG such that H is  m-closed  graph
and[V(H)),, SV(K)SV(H).SinceV(K)SV(H)then[V(K)],,S[V(H)],,andso [V(K)],,SV(K)and therefor K is m-closed.

Corollary 3.6.The m-derived graph of an m-closed graph is m-closed.
Proof: The proof is an immediate consequence of the above theorem.

Definition 3.7.Let H be a sub graph of an M-space (G, &,). The intersection of all m-closed graphs containing His
called the m-closure of H and is denoted by C/,, (V (H)), i.e.

The operator Cl,,: P (V (G)) LP (V (G)) is called m-closure operator.

By Theorem (3.2), Cl,, (V (H)) is m-closed graph for all HSG. Moreover, it is the smallest m-closed graph
containing V(H).H is m-closed if and only if V(H)=Cl,(V(H)) and in particular, Cl,(Cl,(V(H)))=Cl,(V(H)).

Example 3.8.
In Example (3.4), let HEG, H = (V(H), E(H)): V(H)={v1,v2,v3},E(H)={(v1,v1),(v23),(V3,V3),(v3V1)}

Vr

Yz Vi
~— +

Figure 3.2: Sub Graph H of a Graph G given in Example 3.8
SO, Clm(V(['I)): {V1, V2,V3, V5} .
Proposition 3.9.If (G, &,) is an M-space andHEG, then V(H)U [V(H)],,SCL.(V(H))

Prooflet (G&,) be an M-space and HCG. Since V(H)SCL,(V(H))then[V(H)]|nS[CL(V(H))];n. But
[CL(V(H))|,ECL.(V(H))because ClL,(V(H)) is m-closed and so [V(H)],,SCL(V(H)). Accordingly V(H)U
(H)m ECL(V(H)).

Remark 3.10.If (G, &,)is an M-space HC G, then the relation V(H)U [V(H)],,=ClL.(V(H)) is not necessarily true.
The next example is employed as a counter example to show the above remark.
Example 3.11.

Let G=(V(G),E(G)):V(G)={v1,v2V3 Ve Vs}, E(G)={(v1,V1),(V2,V3),(V2,Va), (V3,V4),(V3,V5), (V4 V1), (Va,V4), (V5 V2), (V5 Vs) }
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Vz

Yz

Figure 3.3: Graph G given in Example 3.11

So, Guis given by &,(vi) = {{vi}, (vi, va} Gu(v2) = {{vs, vab, {vs}} Gu(vs) = {{ve, vs}, {v2}} Gu(Ve) = ({1, val,

{v2, va, vu}} and&,(vs) = {{vz, vs}, {vs, vs}}. Hence, we have

«?Em:{ V(G), {v1}, vz}, Avs} Ava} {vs} Ve vl v, V) AVva, Vel Ve Ve, Ve, (V2 va Vs ) {va va ve Vst
Let HEG, H=(V(H),E(H)).V(H)={vs,v4}, E(H)={(v2,v4),(v4,v4)}, then [V(H)];n = {v3} and CL,(V(H)) = {vz, v3, Va,
vs}. Obviously, V(H)U [V(H)m#=Cl.(V(H))

Yo

vz

Figure 3.4: Sub graph H of a graph G given in Example 3.11

Proposition 3.12: If (G,&,) is an M-space, then the m-closure operator Cl,; P(V(G))— P(V(G)) possesses the
following properties for all H, KEG:

(@) Clu(¢)=9,
(b) Clu(V(G)=V(G),
(c) V(H)SClL(V(H),
(d) If HEK then Cl,(V(H)) €CL,(V(K)),
(®) Cl, (Cl,(V(H)=Cl,(V(H)),
(©) ClL(V(H) NV(K)SCL,(V(H)NCL,(V(K)) and
(&) ClL.(V(H)UV(K))2CL,(V(H)UCL,V(K)).
Proof: Straightforward.
Remark 3.13.Let (G, &,)be an M-space, then the following proposition are not true in general for every H,KSG:
(@) CL,(VH)NV(K))=CL,V(H))NCL,(V(K)) and
() Clu(VH)UV(K))=Cl(V(H))UClu(V(K)).
The following example illustrates Remark (3.13),

Example 3.14.
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According to Example (3.11), we have

(@) Let H=(V(H),E(H)):V(H)={v2 v}, E(H)={(v2, v4)(vs, vyithen ClL(V(H))={vz vs vs vstand K=(V(K),
EER))VK)={v2  vsh, EK)={(vs, v2).(vs v5)} then ClL(V(K)={vz vs vs}. But, HNK =
(VHENV(K),E(HNEK)): VIHINV(K) = {v2}, EH)NE®K)= ¢ such that CL,(H N K) =CL(V(H) N V(K)) = {v2}
and so CL,(V(H) N V(K))=ClL(V(H)) NCL(V(K)).

(b) Let H=(V(H),E(H)):V(H)={vs}, E(H)={(v4 vy} then Cl,(V(H))={vs}and K=(V(K), E(K)): V(K)={vs},
E(K)={(vs, vs)}then ClL(V(K))={vs}. But, HUK = (V(H)UV(K),E(H)UE(K)): V(H)UV(K) = {v4, vs}, E(H)UE(K)
= {(vs v4). (vs vs)} such that ClH U K) =ClLV(H) U V(K)) = {v2 vs vs vs} and so Cl(V(H) U
V(K))#Cl,(V(H)) UCL,(V(K)).

4. m-OPEN GRAPHS AND m-INTERIOR OPERATOR

In this section we introduce the notions of m-open graphs, m-interior operators, m-boundary graphs and we study

some of their properties. Also, the M-subspace is defined and some of its properties are investated.

Definition 4.1: The complement of an m-closed graph with respect to the M-space (G, &,) in which it is contained

is called m-open graph. The family €25, of all m-open graphs is defined by
s, ={V(0O)EV(G);V(O)=V(G) —V(H) such that V(H)E€ F3,}.

In an M-space (G, <,,),since the m-derived graph is uniquely defined it follows that the family F', of all m-closed
graphs of this M-space is also uniquely defined. Accordingly, the corresponding family(2;, of all m-open graphs is also

uniquely defined. As a consequence, the families of m-open graphs in two equivalents M-spaces are identical.
Theorem 4.2: In an M-space, the union of any family of m-open graphs is m-open.

Proof.Let(G,&,) be an M-space such that HCGandV(H)=U; V(H,) be the union of the m-open graphs H;SG,i
€LHence V(G) —-V(H)=V(G)-U; V(H)=N[V(G) —V(H;)].Putting V(K;))=[V(G) —V(H)] we have V(G) -V(H)=N; V(K)
where K;, i €Lis m-closed graph. Hence byTheorem (3.2),V(G) —V(H,) is m-closed and therefore H is m-open.

Remark 4.3: Obviously, the empty graph and the whole M-space G are m-open graphs.

Remark 4.4.The intersection of two m-open graphs contained in an M-space is not necessarily m-open graph as

shown in the next example.

Example 4.5.

According to Example (3.11).We have €z, = {V(G), ¢ {vi}, {vi, va}, {v2, vs}, {v1, v2,vs5}, {v2, V3, va}, {12, V3,
vst, {vi, vz, vz, va}, {vi, v2, vz, vs), {vi, V2, v, Vs), v, vz, va, Vs), {V2, V3, V4, Vs)).
LetH=(V(H).E(H)):V(H)={v2,vs}.E(H)={(v5v2),(v5V5) } is m-open andK=(V(K),E(K)):V(K)={v2,v3,V4},
E(K)={(v2,v3),(v2,v4),(V3,V4),(V4,V4) } is m-open.
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Ve Va Vz

Figure 4.1: Sub Graphs H and K of a Graph G given in Example 4.5

But HNK=(V(HNK),E(HNK)):V(HNK)={v2},E(HNK)=$is not m-open.

Corollary 4.6: If (G, &,) is an M-space, then the family (2, of all m-open graphs forms a supratopology on G.
Proof: The proof is immediately follows from Theorem (4.2), and Remark (4.3), and Remark (4.4).

Obviously, by Remark (4.4), the family (2, of all m-open graphs in an M-space (G, &,) need not be a topology on

Theorem 4.7: If (G, &,) is an M-space and HEG, then H is m-open if and only if it contains at least one mixed

degree of each of its vertices.

Proof.Let (G, ¢,) be an M-space and H be an m-open graph contained in G and v€V(H). Suppose that for each
mixed degree of v,MD(v),we have MD(v)ZV(H), thus for each MD(v),MDv)N\[V(G) —V(H)] #¢ which implies vE€[V(G)
—V(H)],, But G —H is m-closed since H ism-open and so [V(G) —V(H)],S[V(G) —V(H)]and hence ve[V(G) —V(H)].
Therefore v& V(H) which contradicts with v€ V(H)and consequently if HEG is m-open and v€ V(H),then there exists at least
one mixed degree of v which is contained in V(H). Conversely, let H contains at least one mixed degree of each of its
vertices,i.e.for all vEV(H) there exists MD(v) such that MD(v)SV(H). Let u€[V(G) —V(H)],, then ugV(H).For if u€V(H)
there would be a mixed degree of u, MD(u),such that MD(u)S V(H) and this would imply that MD(u)N[V(G) —V(H)]=¢ and
thus u@[V(G) —V(H)],,which is impossible.Accordingly,u€[V(G) —V(H)]and so [V(G) —V(H)],,S[V(G) —V(H)] which
implies G—H is m-closed and hence H is m-open.

Definition 4.8.Let (G, &,)be an M-space and HEG, then the union of all m-open graphs contained in H is called
the m-interior of H and denoted by Int ,,(V(H)), i.e.

Int,(V(H))=U{V(O)€25, ;V(O)SV(H)}.

The operator/nt,,: P(V(G)) —P(V(G)) is called the m-interior operator.

By Theorem (4.2), Intm (V' (H)) is m-open graph for HSG. Furthermore, it is the largest m-open graph containing
in H and Int, (V (H)) <V (H) for all HEG. Consequently, H is m-open graph if and only if V' (H) =Int,, (V (H)) and in
particular, Int,, (Int,, (V (H))) =Int,, (V (H)).

Example 4.9.According to Example (4.5), let HEG; H=(V(H),E(H)):V={v,vs},E(H)={(v1,v1)}

O

Figure 4.2: Sub Graph H of a Graph G given in Example 4.9

'l"_;.-
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Then Int,(V(H))={v}.
Proposition4.10.1f(G, f,,,)is an M-space,then the m-interior operator/nt,,: P(V(G)) —P(V(G)) satisfies the following
properties for all H, KEG:
@) Intn(§)=9,
(b) Int,(V(G))=V(G),
() Int,(V(H))SV(H),
(d) If HEK then Int,(V(H))SInt,(V(K)),
(e) Int,(Int,(V(H)))=Int,(V(H)),
® It (VH)NV(K))SInt,(V(H))NInt,(V(K)) and
(&) Int,(V(H)UV(K))2int,(V(H))Ulnt,(V(K)).
Proof: Straight forward.
Remark 4.11.Let (G,¢&,) be an M-space, then the following properties are not true in general for every H, K<G:
(@) Int (V(HNV(K))=Int,(V(H))NInt,,(V(K)) and
) Int,(V(H)UV(K))=Int,(V(H)U Int,(V(K)).
The following example is employed to show the above remark.
Example 4.12:

In Example (4.5), we obtain

(@) LetH=(V(H),E(H)):V(H)={v1,v2,V3,V4},E(H)={(v1,v1),(V2V4),(V2,V3),(V3,V4), (V4 V1), (V4 Ve } then
Int,(V(H))={v1,v2,v3,vijandK=(V(K),E(K)):V(K)={v2,vs},E(K)={(v5V2),(v5Vs) } thenlnt,(V(K))={v2vs} .H NK =
(V(HNK), E(HNK)): V(HNK) = {v5}.

Int(VHNK)) = §.
So, Int,(V(H) N V(K)) #Int,(V(H) 0 Int(V(K)).
(b) LetH=(V(H),E(H)):V(H)={v1,vs},E(H)={(v1,v1)} thenlnt,(V(H))={v;}and

K=(V(K),E(K)):V(K)={v1,v2v4}, E(K)={(v,v1),(V2Ve), (V4 V1), (Ve vy s then Int,(V(K))={vyv2,ve} . H UK = (VH U K), E(H U
K)): V(H UK) = {v1, v2, v3, v4}. Int,(V(HU K)) = {vy1, vz, v3, V4}

So, Int,, (V (H) U V (K)) #Int,, (V (H)) U Int,, (V (K))
Proposition 4.13.If (G, &,)is an M-space and HEG, then
(@) Int,(V(H))=V(G) -[Cl,(V(G)-V(H))] and
(b) CL,(V(H) =V (G)—[Unt,,(V (G) -V (H))].
Proof: Obvious

Definition 4.14.Let (G, &,) be an M-space and HEG, then
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Bd,(V(H))=Cl,.(V(H))-Int,(V(H)) is called the m-boundary of H and
Ext,(V(H))=V(G) —Cl,,(V(H)) is called the m-exterior of H.
Definition 4.15.Let (G, &,,) be an M-space, HEG and

QL ={VH)NV(O) ; V(0)EQ:, }.
The pair ([-I,.ng) is called an M-subspace of (G, &,.).

Theorem 4.16.1f H is a subgraph of the M-space (G, §,,,),then!2§n= {VE)NV(0):V(O)EL2;,} is a supratoplogy on H.

Proof. SinceV(G) and ¢ are two members of(2;,,then H=HNG is a member of an and ¢=HN ¢6an Nowlet {K;|i €I} be a
subclass ongn,then by Definition(4.15) for each i€/ there exists an m-open graphM;such thatK;=HNM.Hence U; K;=U; (HNM;)=H
N(U; M;).But,by Theorem(4.2),U ,-A/I,-Eﬁé,,,thenU,-]\/[,-E!Jgn. Consequently,an is a supratopology on H.

Remark 4.17.Let (G,&,) be anM-space and HEG, then (25, need not be a topology on /. Also, on the contrary to the case

oftopological subspace, ifHEG is anm-open graph then the relation angﬁgm is not true.
The following example shows Remark (4.17),
Example 4.18.

According to Example(3.4), we get

Oz = {V(G), ¢{va}, {ve, v3}, v, Vs}, {ve, V2, s}, {vi, Vs, va), Vi, v, Vs {1, Ve Vs, {v2, V3, Va), {Vv2, v, v} {v1, V2, Vs,

V4}, {VL Va2, V3, Vs}, {V1, V2, Vg, Vs}, {Vb V3, Vg, Vs},{V2, V3, V4, Vs}}.
QL = (VH), ¢ {vi}, {va}, {va, vz}, v, va}, {v2, v4}}.Obviously, QF, €0,
5. m-CONTINUITY AND m-HOMEOMORPHISM

The concept of continuity is a basic one in mathematics. In this section, the m-continuous (m-open and m-closed)
functions are defined and some of their properties are investigated. Furthermore, the m-homeomorphism is defined and

some of its properties are studied.

Definition 5.1.Let (G4, &,) and(G5, &,)be two M-spaces.A functionffrom G; intoG; is said to be m-continuous if

the inverse image of each m-open graph in G, is m-open in Gy,that is, if
V(H) €Sy, implies [ (V(H))E Qsy.
Example 5.2.

Let Gi=(V(G1).E(G)):V(G)={v1,v2V3.VaVs},E(G)={(V1,V1), (V1.V5).(v2,V3),(V2.V4). (V3,V1),(V3.V3), (V5. V3), (V5. V4), (V5 V5) }

Wy Vg

L]

Vg Vi
Figure 5.1: Graph G, given in Example 5.2

Hence, we get
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En(v) ={{ve,vs}, vy, vst}, Eul(va) = Hvavel (vst) Su(va)={{ve,vs}, {v2vsl}, Su(ve) ={ ¢ {vz vs}}
andé,(vs)={{vsvaVs}, {v1,Vs}}.

So, the family (2, of all m-open graphs of the M-space (G, &,) is given by:
-ng =Gy, @ {va}, {va, va}, {va, Vs), (v V2, vsh Ve, Va V), Ve Vs Vs), (Ve Ve Vst v, v, ve), (2, Vg,
Vs} Ve, Va2, V3, Vab, {V1, V2, V3, Vs), V1, V2, Vo Vs (Ve V3 Ve Vs), (V2 V3V Vst

Also, letG2=(V(G2),E(G2)): V(G2)={uzuzus g s},
E(Gy)={(uguy),(uzusz), (uzuy),(usus), (uguiz),(Ustiy), (Usuz), (Usus)}.

¥ s

Figure 5.2: Graph G, given in Example 5.2.

So, &, is defined by

Cgm(ul):{{ul}’ {uz g} ), Culuz) ={{us g}, {us} }, Gu(uz) = {{ug ust, {uz}}, Culug) = {{uz,us}, {uzus s} } and
Gn(us)={{uzus}, {usus}}.

Consequently, the family €2, of all m-open graphs of the M-space (G, &) is given by

-Qon:{ V(G2), g us}, {us, ug}, {uz, usy, {uz, uz usy, {uz us, g}, {Uz usz usy, {Ug, Uz Uz Ugy, {Ug, Uz Uz Us),
Uz, Uz, Uy, Us}, {Ug, Uz, Ug Us), {UzUszULUs T

Let f:G;—G> and g: G; —Gzsuch that

Jva)=uz f(v2)=us f(vs)=us,f(ve) =us,f(vs) =usandg(vy) =us g(v2) =u3z,g(vs) =u1,8(ve) =u5,g(vs) =t

Accordingly,the function f is m-continuous since the inverse image of each m-open graph in Gis m-open
inG;.But the function g is not m-continuous becauseg™*({u;})={us} and {us} is not m-open inG;.
Some properties of m-continuous functions are investigated in the following theorem

Theorem 5.3.Let f be a function from an M-space (G4, & )into an M-space (G, §m2),then the following

statements are equivalent:

(a) fis m-continuous,

(b) The inverse image of each m-closed graph in Gis m-closed in G,

(© Clu(f(V(K)Sf(Clu(V(K))) for all KSGr,

(d) ACL.(V(H)))SCL(f(V(H)) for all HEG,

(e) For each v€V(G) and each m-open graph KEG, Containingf(v),there exists an m-open graph HEG; containing v

such that f{V(H))SV(K),

www.iaset.us editor@iaset.us



66 Yousif Yaqoub Yousif & Sara Saad Obaid

O AV(H)m)SCL(f(V(H))) for all HEG,
(8) f(Int,(V(K)))SInt,(f*(V(K)))for all KEG and
(h) Bd,.((V(K))Sf(Bd,(V(K)))for all KEG,.

Proof.(a) =(b). Let FEG; be anm-closed graph, then [V(G,) —V(F)] is m-open in G,. Since f is m-continuous,
then fX(V(G2)-V(F)=f(V(G))< X (V(F))= V(G) — f {(V(F)) is m-open in G; and hencef ™ (V(F)) is m-closed in G;.

(b)=(c). Let KEG,, then CI,(V(K)) is m-closed in G, and since V(K)SCL,(V(K)), thus f(V(K))Sf (CL.(V(K))).
But, by(b),f (CL.(V(K))) is m-closed in G; which containing f™(V(K))andconsequently CL,(f*(V(K))) Sf (CL.(V(K))).

(©)=(d). Let HSG,;, then f{(H)SG, and so by (c), we have CL,(f(f(V(H)))<Sf(CL,(f(V(H))). Since
VIS (V) then  Clu(VH)SCL('(V(H)) and  hence  Clu(VH)S/ (Clu({V(H).  Thercfore
ACL(VED)SSI (CLu(f(V(H)))) SClu(f(V(H))). That is f(Cl(V(H)))Clu(f(V(H))).

(d)=(a). Let KEG, be anm-open graph, then F = (G,—K) is m-closed graph in G, and so f(V(F))SV(G). By (d)
we have f(Clu(f (V(E))SCL(f((V(F). Since [ (V(F))) SV(F) then Cl(f (VE))SClu(V(F)) = V(F) and so
fCLVE)SVE)  implies  [(ACLGV(F)S  [(VF)But  Cl((V(E)S/HCL((V(F) and  so
CL.("'(V(F)))Sf(V(F)) and hence CL,(f"(V(F))) = f(V(F)). Therefore /(V(F)) in m-closed in G;. Because /(V(F)) =
FYV(G,) V(K)) =V(Gy) +(V(K)) then G, (K) is m-closed in G; and then f*(K) is m-open in G.

(a)=(e). Let vEV(Gy) and KEG; be an m-open graph containing f(v). Then, by (a), H =f(K) is an m-open graph
in G; which containing v and hence f{H) = f{f {(K))<K. i.e., f{(H)EK.

(e)=(a). Let KEG; be an m-open graph and f(v)€V(K), then v€f X(V(K)). By (e), there exists an m-open graph
HCG; containing v such that f{H,)SK which implies veV(H,) Sf(f(H,)Sf (V(K)). Thus {v} SV(H)Sf (V(K)) and
hence Usermm, (v} SUseriouy VIH)S(V(K)). But [ (V(K)) = Uieriny (v} and so fA(V(K))= Useriou) V(H,).
Therefore f(V(K)) is an m-open graph in G; because it is a union of m-open graphs and hence f'is continuous.

(d)=(f). LetHEG;. Since [V(H)],,ECL.(V(H)) and by (d) we have A[V(H)]m) SACL(V(H))) SCL.{(V(H))). So
SOV )] m) SCL(V(H))).

(H=(d). Let K SG;be anm-closed graph, then V(K) = CI,(V(K)) and thus f(V(K)) = f*(CL,(V(K))). Since
SIVK)EV(Gy), then by (), AU/ (VIK)m) SCL (VKD)ECL(V(K)) = V(K), ie., filf "(V(K)]n)E V(K) implies[f
VR oSS A (VD ), (VK)) and s0 [ (VIK) T Sf(V(K)). Hence f(V(K)) is m-closed graph in G.

(@)e(g). Let K €G,. Then Int,(V(K))SV(K) and so f(Int,(V(K)))Sf(V(K)). Since Int,(V(K)) is m-open in G,
and fis m-continuous, thenf™(Int,(V(K))) is m-open in G;. Now f(Int,(V(K))) is m-open contained in f*(V(K)) so
Y Int,(V(K)))Snt,(f(V(K))). Conversely, suppose that K is an m-open graph in G, then V(K) = Int,(V(K)) and so
1K) = [nt,(V(K). By (20 V(K) = fUInt,(V(K) Slnt,(f(V(K))S/*(V(K)) and hence f(V(K))
=Int,.(f(V(K))). Consequently, *(V(K)) is m-open in G; and thus fis m-continuous.

(a)=(h). Suppose that f is m-continuous and KEG,, then CL,(f(V(K))Sf (CL(V(K)) and Int,(f*(V(K)))=2
[ nt(V(K)). So [f*(VK)Im = [Clu(f*(V(K)) —ntu(f VKIS [ (Clu(V(K)) ~ (Intu(VK))] = [(Clu(V(K)))
~Int,(VIK))1 = [ (V(K)]). Accordingly, [ (V(K)lm = f(AV(E)]5).
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(h)=(b). Let Kbe an m-closed graph in G,, then CL,(V(K)) = V(K) and so f(CL,(V(K))) = f*(V(K)). Since
WEKImECL(V(K)) and by (h) we have [[YV(E)ILS VKIS (CLVK) = fH(V(K), implies
VRS (VIK). But Int,(f(V(K))S(V(K)) and hence [f(V(K))|mUlnt,(f*(V(K))) Sf (V(K))implies
Clu(F (VKIS " {(V(K)),implies Clu(f(V(K))) = f1(V(K)). Therefore f{(V(K)) is m-closed in G.

Remark 5.4.Let (G4, &,)and (G2, ¢&,,) be M-space and f:G;—G,then the following statements are not necessarily

equivalent:
(a) fis m-continuous.
(b) For each v€V(G) and each mixed degree ME G, of f(v),there exists a mixed degree NEG; of v such that f(N)SM.
The next example illustrates Remark (5.4),

Example 5.5.

According to Example (5.2), let v=v;€V(G;) and M = {us, u,} SV(G,) which is a mixed degree of f(v) = f(v;) =
uz. Obviously, there is no mixed degree N SV(G;) of such that f{N)EM = {u3, uy}.

Theorem 5.6.Let (G, &,) and (G2, &) be two M-spaces and /- G;— G be an m-continuous function,thenfy: H
— G is an m-continuous where H €G4is an M-subspace and f}; is the restriction offto H.

Proof. Suppose that K is an m-open graph in G, i.e. K €€2,. Since fis m-continuous then /' 1K) €42;, and so H
Nf (K)EQZ,. But fi (W) = HNf (W) for all W SGzand thus f;; (K)= H Nf™(K). Therefor f;; (K)€£2}, and hence fy is
m-continuous.

Theorem 5.7.Let (Gy, &), (G2, {y)and (Gs, 1,,) be M-spaces. If f:G;— G, and g : G,—G3 are m-continuous

functions, then gof: G;—Gj is also m-continuous.

Proof. Let H be an m-open graph in W. Because g is m-continuous thus g?(H) is m-open in G and since f is m-
continuous then f(g™!(H)) is m-open in G;. But (go /)™ \(H)=" (g™ (H)), so (ge )™ (H) is m-open in G;. Consequently, go

fis m-continuous.

Definition 5.8.Let (G, ¢,) and (G5, ¢,) be two M-spaces.A functionffrom G; into G is said to be m-open (m-
closed) if the image of each m-open (m-closed) graph in G; is m-open (m-closed) in G_.
In general,functions which are m-open need not be m-closed and vice versa as shown in the following example.

Example 5.9.

LetGi=(M(G1), E(G)):V(G)={v1,v2V3,V4 s}, E(G1)={(V1,V2),(v1,Ve), (V2V2),(V2,V3), (V2. V4), (V3 V1), (V3,V4), (Ve V3), (V4 Vs), (Vs,V2),
(Vs,vs)}.

Fl Va2

Figure 5.3: Graph G; given in Example 5.9
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Hence, we get

En(v) = {2 val st} Eu(v) ={{v2, va val, (Ve v vst ) Su(va) ={{ve, va}, {vz val ),

Sn(ve) ={{vsvs}, {ve,vzvst} ands,(vs)={{vzvs}, {vavs}}.

So, the families of m-open graphs and m-closed graphs of the M-space (G;, &,) are given respectively by
Fan={V(G1), g{v}. (v}, {vs) .

-ng =(G1), ¢{v1, vz, v3, Va}, {V1, V3, Vg Vs}, {V2,V3 V4 V5} ]

Also, let G2=(V(G2),E(G2)):V(G2)={ug,uzuzusus},
E(Gz)={(uguz),(uz,us), (uzuz),(uzuy), (uzuz), (s usz), (usuz), (s ), (Usus)}

Ly
Ly
- Ug
Ug Us
Figure 5.4: Graph G; given in Example 5.9
Thus, &, is defined by
Culuzg)={{uzus}, {uguz}}, Guluz) ={{us s}, {us}}, Culuz) ={{uz, us}, {uzus} ), Cu(ty) ={ § {uzus}} and

Gnlus)={{uzugus}, {us,us}}.

Consequently, the families of m-open graphs and m-closed graphs of the M-space (Gz, ) are given respectively
by

«?gm:{ V(G2), g us}, {uz}, {usy, {ugt, {us}, {ug, us}, {ugus}, {uzus}, {uzuq}, {uzusy, {usuq}, {uzusz ), {uzugus}, {
Uz, Uz, UzUs}} .

-ng ={V(G2), ¢ {us}, {ug, us}, {ug, us}, {ug, uz usy, {ug, us ugy, {uz, us us}, {uz, ug us}, {Uz usz, usl, {Uz uy

usy, {uz, uz uz us}, {ug, Uz us us}, {us, uz ug us}, {Uz, us, ug us}, {Uzusugust}.
Let f:G;—G and g:G;—Gand h: G;—G2 such that
Jv)=uz, f(va)=uz, f(va)=us, five)=us f(vs)=us,
8(v))=uz, g(vz)=uy, g(v3)=uz g(ve)=u4, g(vs)=usand
h(v)=uz, h(v))=uz, h(vs)=us, h(vy)=us, h(vs)=us.

Accordingly, the function f'is m-open but not m-closed sincef(G;) = {uz, us, u4, us}which is not m-closed graph in
G,. Moreover, fis not m-continuous since f “X({u,}) = {v4} and {v,} is not m-open graph in G;.On the other hand, the
function g is m-closed but not m-open since g({vi, vz, vs, v4})= {uz, us} which is not m-open graph in G. Finally, the

function 4 is m-open and m-closed.
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Example 5.10.

According to Example (5.2), the function fis m-continuous but not m-open since f({v;,v3}) = {uz, us} which is not

m-open graph in G,.

Theorem 5.11.Let /" be a function from the M-space (G &,) into the M-space (G2 ¢,).then the following

statements are equivalent:
(a) fis m-open,
d) flInt,(V(H))SInt,(f(V(H))) for all HEG; and

(c) For each v€V(G) and each m-open graph OSG; containing v,there exists an m-open graph K€G, containing f(v)
such that KEf(0).

Proof.(a)=(b). Let HEG;. Since Int,,(V(H))SV(H) then f(Int,(V(H)))Sf(V(H)). But, Int,(V(H)) is m-open graph
in G; and f is m-open function. So, by (a), f(Int,(V(H))) is m-open in G, which contained in f{V(H)). Therefore,
Slnt,(V(H)))SIntu(f(V(K))).

(b)=(a). Suppose that H is an m-open graph in G, then V(H) = Int,(V(H)) and so f(V(H)) = f(Int,(V(H))).
By (b), fintn(V(H))) SIntu(f(V(H)), then f(V(H)) SIntu(f(V(H))). But Int,(f(V(H)))Sf(V(H)) and thus f(V(H)) =
Int,(f(V(H))). Accordingly,f(H) is m-open graph in G- and hence fis m-open function.

(a)=(c). Let veV(G,) and HEG; be an m-open graph such that v€EV(H). Then, by (a),K = f(H) is an m-open
graph in G which containingf(v) and hence K&f(H).

(c)=(a). Let H €G; be an m-open graph and v€V(H),then u = f(v)Ef(V(H)). By (c), there exists an m-open
graph K,EG, containing « such thatK,Sf(V(H)) which implies u €V(K,)Sf(V(H)).Thus {u} SK,Sf(V(H)) and hence
U eqmmy{ut €Uy emun K Sf(V(H)).But f{V(H)) = Uweway {u} and so fIV(H)) = UueqraK.. Therefore, f(V(H)) is an

m-open graph in G because it is a union of m-open graphs and hence f'is m-open.

Remark 5.12.Let (G,&,) and (G2 &) be two M-space and f:G;—Gothen the following statements are not necessarily
equivalent:
(a) fism-open.
(b) For each v€V(G) and each mixed degree MSV(G,) of v, there exists a mixed degree NS V(G) of f(v) such that NSf(M).

The following example illustrates Remark (5.12),
Example 5.13.

According to Example (5.9), let v=v3€V(Gy) and N = {v;, v4} SV(G;) which is a mixed degree system of v;. Obviously, there
is no mixed degree system MCV(G;) of f(vs3) = uz such that MSf(N) = {uz, u,}.

Theorem 5.14. Letfbe a function from the M-space(Gy ¢&,)into the M-space (Gz ¢).then f is m-closed if and only if
Clu(f(V(H))SACly(V(H))) for all HEG, .

Proof. Suppose that f is m-closed and HSG;. But V(H)SCIL,(V(H)) which implies f(V(H))Sf(Cl,(V(H))) and so
ClL.(f(V(H)))=ClL,(f(Cl,(V(H)))). Since Cl,(V(H)) is m-closed in G; and f is m-closed, then f(Cl,(V(H)))is m-closed in G,. Thus
f(CL(V(H)) = CL,(f(Cl,(V(H))) and hence CI,(f(V(H)))SHCl,(V(H))). Conversely, let H be an m-closed graph in G;, then V(H) =
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Cl,(V(H)) and so f(V(H)) = f(CL(V(H))). Since Cl,(f(V(H)))SA(Cl,(V(H))) thus CL,(f(V(H)))S/(V(H)). But f(V(H))<CL,(f(V(H))) then
J(V(H)) = ClL(f(V(H))) and hence f(V(H)) is m-closed in G,. Consequently, fis m-closed function.

Definition 5.15.Let (G4, &,)and (G2, &) be two M-space. A function ffrom G; into G is said to be an m-homeomorphism if

(a) fis bijective.
(b) fand fare m-continuous.

The two M-spaces G; and G are called m-homeomorphic.
Example 5.16.
Let Gi=(V(G1).E(G)): V(G1)={v1.v2.vs}, E(G1)={(V1,V2).(v2V3).(v3V3)}

Vi

. vJO

Figure 5.5: Graph G, given in Example 5.16

Then,&, is given by
En(vi)= vz}, @), Eu(v2) = {{vs}, {va}} and &, (ve)={{vs}, {v2,vs} .
Oy = (G1), §, {vi}, {vs}, vy, vz}, {ve, v}, (v2,vs)}.

Also,let G2=(V(G2),E(G2)):V(G2)={uzuzus}, E(G2)={(uz,uz),(uzuz),(usuz), (usus)}.

Uy

Ua Uy
-

Figure 5.6: Graph G; given in Example 5.17

Thus,¢, is given by
Cn(ug)={{uz}, {uguz}}, Guluz)={{us}, {us} jand g, (us)={{uzus}, {us}}.
Q5 ={V(G2), plus}, {us}, {uz, uz}, {uz, us}, {uzus}}.

Let f:G;—G and g:G;—G;

Jvi)=us, f(v2)=uz, f(vs)=u; and

8(v)=uz, g(vz)=uz, g(vs)=us.

Accordingly, the function f'is m-homeomorphism since fis bijective. Also, f'and f are m-continuous. But the function g is not
m-homeomorphism since g({v;}) = {u,} and {u;} is not m-open graph in G,which implies g”%is not m-continuous. Furthermore,
g ({us}) = {v1} and {v;} is not m-open graph in G;which implies g is not m-continuous.

Theorem 5.17.Let fbe a bijective function from the M-space (G4, &,) onto the M-space (G2, &,),then the following statements

are equivalent:
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(a) f1is an m-homeomorphism,

(b) fis m-continuous and m-open,

(¢) fis m-continuous and m-closed and

(d) CLu(f (V(H)) =f (Cln, (V (H))) for all HEG;.

Proof: The proof is obvious.
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